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Abstract: The paper presents a moving horizon `2 control approach for the class of linear
parameter-varying systems. By solving online a convex optimization problem subject to linear
matrix inequality constraints the `2 gain from the energy bounded external disturbance to the
performance output is minimized at each sampling instant. The approach guarantees satisfaction
of state and input constraints and it is shown that the online recalculation of the control law
improves disturbance attenuation significantly when compared to a static control law.

1. INTRODUCTION

Model predictive control (MPC), receding horizon control
(RHC), or moving horizon control (MHC) is an optimiza-
tion based control method. In its general form a control
sequence is determined by optimizing a finite horizon cost
function at each sampling instant, based on an explicit
model of the considered system and the current state
measurement. The first part of the obtained control input
is applied to the system. At the next sampling instant, the
optimization problem is solved again based on new state
measurements, and the control input is updated. Due to
its ability to explicitly handle state and input constraints,
MHC has received much interest in both academic com-
munity and industrial applications over the last decades,
see e.g. Mayne et al. [2000], Qin and Badgwell [2003].
In many control problems one has to deal with linear
parameter-varying (LPV) systems. They represent a class
of nonlinear systems which can be controlled using linear-
like control techniques. The dynamics of LPV systems
depend on a time-varying parameter, which takes values
in pre-specified sets. The analysis and synthesis of LPV
systems play an important role in control theory and
application since they can be applied to both nonlin-
ear systems and linear systems with model uncertainties.
Many research activities have focussed on the develop-
ment of control methods for LPV systems in the past,
see for example the results presented by Shamma and
Athans [1991], Apkarian et al. [1995], Scherer and Weiland
[2000], Wu [2001], Blanchini and Miani [2003], Bliman
[2005] and Lim [1999] for an overview. Since moving hori-
zon control has well-known advantageous properties such
as optimal solutions with respect to the considered cost
function and guaranteed satisfaction of state and input
constraints, see e.g. Mayne et al. [2000], clearly also several
MHC schemes that are able to deal with LPV systems
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have been published in the literature, see e.g. Casavola
et al. [2002], Cuzzola et al. [2002], Kothare et al. [1996],
Lee et al. [2007], Lu and Arkun [2000], Park and Jeong
[2004], Pluymers et al. [2005] and Yu et al. [2009a]. In
most of those methods the control law is calculated by
repeatedly solving a convex optimization problem based on
linear matrix inequalities (LMIs, Boyd et al. [1994]) such
that an upper bound on a worst-case cost function is min-
imized. Most of these approaches consider LPV systems
which might be uncertain, however are not affected by
external disturbances. In the presence of energy bounded
external disturbances the concept of `2 stability (Khalil
[2002]) is a suitable method to tackle the problem. To the
authors’ best knowledge there exist only few results on
moving horizon control with guaranteed `2 performance
for LPV systems (Lee and Park [2008]). The goal of this
paper is to extend the results of Chen and Scherer [2006]
and Yu et al. [2009a] to design a novel MHC controller with
guaranteed `2 performance for state and input constrained
discrete-time LPV systems. Similar to Yu et al. [2009a] a
parameter-dependent state feedback control law is applied
which is based on the repeated solution of a convex opti-
mization problem subject to LMI constraints. The LMI
conditions are derived from a dissipation inequality as
it is used in Chen and Scherer [2006] and Khalil [2002].
By solving the optimization problem at each sampling
instant the `2 gain from the disturbance to the considered
performance output is minimized.
The remainder of the paper is structured as follows. In
Section 2 the considered system class is introduced and
the control task is discussed. Section 3 provides the main
result of the paper, namely a moving horizon `2 controller
for LPV systems with guaranteed satisfaction of state and
input constraints. A simulation example in Section 4 illus-
trates the effectiveness of the moving horizon approach.
The paper is concluded in Section 5 with a brief summary.

1.1 Notation

We denote ψi,k as the i-th element of the vector ψk.
With I and 0 we denote an identity matrix and a zero
matrix, respectively, of suitable dimension. The vectors



em, m = 1, . . . ,mmax, represent the column vectors of
an identity matrix of dimension mmax ×mmax. With the
expression Co{F1, . . . , FN} we denote the convex hull of
the N matrices F1, . . . , FN .

Remark 1. In this paper we use the expression `2, and not
as in many other publications the expression H∞. In the
linear case the `2 gain of a system is equivalent to its H∞

gain. However, the H∞ norm is defined in the frequency
domain. Since the frequency domain generally is only
defined for linear systems, one would have to clearly define
the H∞ norm for nonlinear systems, and in this paper in
particular for LPV systems. Furthermore, we provide time-
domain considerations in this paper. Therefore, it is more
suitable to use the `2 expression instead of H∞.

2. PROBLEM SETUP

We consider discrete-time linear parameter-varying (LPV)
systems of the form

xk+1 =A(θk)xk +B(θk)uk +G(θk)wk, (1a)

yk =C(θk)xk +D(θk)uk +H(θk)wk, (1b)

zk =E(θk)xk + F (θk)uk, (1c)

subject to the constraints

−zm,max ≤ zm,k ≤ zm,max, m = 1, · · · , nz, (2)

where xk ∈ R
nx denotes the system states, uk ∈ R

nu is the
control input, wk ∈ R

nw is the disturbance input satisfying

∞
∑

k=0

‖wk‖
2 ≤ β, (3)

i.e. the signal wk is in `2[0,∞). yk ∈ R
ny represents

the performance output and zk ∈ R
nz is the constraints

output. The constant vector zmax defines the constraints
on the states xk and the control input uk for system (1).
The system matrices A(θk) ∈ R

nx×nx , B(θk) ∈ R
nx×nu ,

C(θk) ∈ R
ny×nx , D(θk) ∈ R

ny×nu , E(θk) ∈ R
nz×nx ,

F (θk) ∈ R
nz×nu , G(θk) ∈ R

nx×nw , and H(θk) ∈ R
ny×nw

are assumed to depend on the parameter vector θk :=
[θ1,k, θ2,k, · · · , θN,k]T ∈ R

N , which belongs to the poly-
tope P defined by

N
∑

j=1

θj,k = 1, 0 ≤ θj,k ≤ 1. (4)

We assume that the parameter θk can be measured online.
Clearly, as θk varies inside the polytope P, the matrices of
system (1) vary inside the polytope Ω

[

A(θk) B(θk) G(θk)
C(θk) D(θk) H(θk)
E(θk) F (θk) 0

]

∈ Ω, (5)

which is defined by the convex hull of N local extremal
matrices Ai, Bi, Ci, Di, Ei, Fi, Gi,Hi, i = 1, · · · , N :

Ω := Co

{[

A1 B1 G1

C1 D1 H1

E1 F1 0

]

, · · · ,

[

AN BN GN

CN DN HN

EN FN 0

]}

.

Therefore, we can write the matrices of system (1) as

A(θk) =

N
∑

j=1

θj,kAj , B(θk) =

N
∑

j=1

θj,kBj (6a)

C(θk) =

N
∑

j=1

θj,kCj , D(θk) =

N
∑

j=1

θj,kDj (6b)

E(θk) =

N
∑

j=1

θj,kEj , F (θk) =

N
∑

j=1

θj,kFj (6c)

G(θk) =

N
∑

j=1

θj,kGj , H(θk) =

N
∑

j=1

θj,kHj . (6d)

The control task is to design a controller for system (1)
such that the `2 gain from the disturbance wk to the
performance output yk is minimized while the constraint
output zk satisfies (2) for all k.
In the following section we derive LMI conditions to
calculate a parameter-dependent feedback law

uk = K(θk)xk, (7)

which satisfies the given control objectives, in a moving
horizon manner, i.e. the control law is recalculated at each
sampling instant k by the online solution of a convex opti-
mization problem subject to the derived LMI conditions.

3. MOVING HORIZON `2 CONTROL

Suppose that Kj ∈ R
nu×nx is a time-invariant feedback

gain of the j-th vertex system. A suitable parameter-
dependent feedback law for the whole LPV system (1)
is obtained via the weighted average of the control laws
designed for each vertex

K(θk) =

N
∑

j=1

θj,kKj . (8)

Using control law (7), for system (1) we obtain the closed-
loop representation

xk+1 =Acl(θk)xk +G(θk)wk, (9a)

yk =Ccl(θk)xk +H(θk)wk, (9b)

zk =Ecl(θk)xk, (9c)

where the matrices Acl(θk), Ccl(θk), and Ecl(θk) are

Acl(θk) =

N
∑

i=1

N
∑

j=1

θi,kθj,k(Ai +BiKj), (10a)

Ccl(θk) =

N
∑

i=1

N
∑

j=1

θi,kθj,k(Ci +DiKj), (10b)

Ecl(θk) =

N
∑

i=1

N
∑

j=1

θi,kθj,k(Ei + FiKj). (10c)

Based on the closed-loop system representation (9) with
the closed-loop matrices defined in (10), in the following
subsection 3.1 we derive some basic `2 stability results
for the considered LPV system. In subsection 3.2 we
exploit these results in the design of the moving horizon `2
controller.



3.1 Constrained `2 Control

The following theorem derives conditions for the calcula-
tion of a controller for system (1) such that the `2 gain
from the disturbance wk to the performance output yk is
minimized, and the output zk satisfies the constraints (2).

Theorem 1. For a given α, suppose that there exist a
symmetric, positive definite matrix X ∈ R

nx×nx , matri-
ces Y1, . . . , YN ∈ R

nu×nx and a constant γ ∈ R
+ such that

the optimization problem

minimize
γ,X,Y1,...,YN

γ (11a)

subject to
N

∑

i=1

N
∑

j=1

θi,kθj,kLij ≥ 0 (11b)

N
∑

i=1

N
∑

j=1

θi,kθj,kFij,m ≥ 0, m = 1, . . . , nz, (11c)

has a feasible solution for all θk ∈ P. Then with Kj =

YjX
−1, P = X−1, K(θk) =

∑N

j=1
θi,kKj , V (x) = xTPx

and with the matrices

Lij =







X ? ? ?
0 γI ? ?

AiX +BiYj Gi X ?
CiX +DiYj Hi 0 γI






, (12)

Fijm =

[

X ?

eT
m(EiX + FiYj)

1

α
z2
m,max

]

, (13)

the state feedback law uk = K(θk)xk guarantees that

(1) the `2 gain from the disturbance wk to the perfor-
mance output yk is less than (or equal to) γ,

(2) if the initial state x0 satisfies γβ + V (x0) ≤ α, then
(a) all perturbed state trajectories remain in an

ellipsoid defined as

Ω(P, α) :=
{

x ∈ R
nx |V (x) ≤ α

}

, (14)

(b) the constraints (2) are satisfied.

Proof. Part I. Consider the Lyapunov function candi-
date V (xk) = xT

k Pxk > 0. We have to show that the `2
gain of the closed-loop system (9) from the disturbance wk

to the performance output yk is bounded by γ, which is
according to Lin and Byrnes [1994, 1996] the case if the
dissipation inequality

V (xk+1) − V (xk) + γ−1yT
k yk − γwT

k wk ≤ 0 (15)

holds for all k ≥ 0. Substituting X and Yj in (11b)
as defined in the theorem by P and Kj, and using (6d)
and (10) it follows that









P−1 ? ? ?
0 γI ? ?

Acl(θk)P−1 G(θk) P−1 ?

Ccl(θk)P−1 H(θk) 0 γI









≥ 0 (16)

is satisfied. Pre- and post-multiplying with diag(P, I, P, I),
applying the Schur complement, and using the system
dynamics (9), leads to (15).
Part II-a. By the assumption (3), i.e.

∑

∞

k=0
‖wk‖

2 ≤ β,
the dissipation inequality (15) implies that

V (xk) + γ−1

k−1
∑

i=0

‖yk‖
2 ≤ V (x0) + γβ ≤ α, (17)

holds for all k ≥ 0. Given any x0, (17) shows that the state
trajectory starting from x0 stays in the ellipsoid Ω(P, α).
This implies that this ellipsoid contains the set of all reach-
able states for the closed-loop system starting from x0.
Part II-b. From (2) it follows that the inequality

xT
kE

T
cl(θk)eme

T
mEcl(θk)xk

z2
m,max

≤ 1, m = 1, . . . , nz, (18)

has to be satisfied. From part II-a we know that xk ∈
Ω(P, α) for all k ≥ 0, i.e. xT

k Pα
−1xk ≤ 1 holds. Thus,

satisfaction of

ET
cl(θk)eme

T
mEcl(θk)

z2
m,max

≤ Pα−1, m = 1, . . . , nz, (19)

implies satisfaction of the constraints (2). Substituting X
and Yj in (11c) as defined in the theorem by P and Kj,
and using (10c) leads to

[

P−1 ?

eT
mE(θk)P−1 1

α
z2
m,max

]

≥ 0, m = 1, . . . , nz. (20)

Multiplying (20) with diag(P, I) and applying the Schur
complement we obtain the desired inequality (19).

In (11) the constant α does not represent an optimization
variable and has to be chosen suitably before solving the
optimization problem. Cleary, from (11c) we know that
the choice of a larger α leads to a smaller set of feasible
solutions (Q,Y1, . . . , YN ), and hence to introduction of
conservativeness and a larger optimal value γ. This implies
worse control performance. However, on the other hand
it follows from the condition γβ + V (x0) ≤ α in part
II of Theorem 1 that the smaller the choice of α, the
smaller the disturbance energy β allowed for guarantee-
ing satisfaction of the constraints (2). This contradiction
motivates us to apply a moving horizon strategy to online
deal with the trade-off between constraint satisfaction and
good performance. Therefore, we extend and reformulate
optimzation problem (11) such that a convex optimization
problem subject to LMIs is yielded, which enables a fast
online solution using numerical solvers such as e.g. Sedumi
(Sturm [1999]) and Sdpt3 (Tütüncü et al. [2003]).
The optimization problem (11) is subject to the parameter-
dependent matrix inequality constraints (11b) and (11c).
Since the desired optimal solution has to hold for all θk ∈
P, it is not possible to solve the given problem. The follow-
ing lemma gives conditions to reformulate the optimization
problem (11) in terms of parameter-independent LMIs.

Lemma 1. (Gao [2006], Kim and Lee [2000])
If there exist matrices Λij = ΛT

ji, i = 1, . . . , N , j =
1, . . . , N , such that the LMIs

Γii ≥ Λii, i = 1, . . . , N, (21a)

Γij + Γji ≥ Λij + ΛT
ij , i = 1, . . . , N, j < i, (21b)

[Λij ]N×N
≥ 0, (21c)

are satisfied, where

[Λij ]N×N =







Λ11 · · · Λ1N

...
. . .

...
ΛN1 · · · ΛNN






, (22)



then with ξi,k ≥ 0,
N
∑

i=1

ξi,k = 1 ∀k, the parameter-dependent

matrix inequalities

N
∑

i=1

N
∑

j=1

ξi,kξj,kΓij ≥ 0, (23)

are satisfied for all k.

Lemma 1 allows to formulate LMI conditions as in (21)
such that a parameter-dependent matrix inequality of the
form (23) is satisfied. This can be used to guarantee
satisfaction of the parameter-dependent matrix inequali-
ties (11b) and (11c) by the satisfaction of LMI conditions,
yielding a convex and parameter-independent optimiza-
tion problem which can be solved efficiently online. Simi-
larly, Lemma 1 has been applied in Yu et al. [2009a] and Yu
et al. [2009b].

3.2 Moving Horizon Formulation

In this subsection we introduce a moving horizon `2 con-
troller which relies on the following convex optimization
problem that is solved repeatedly at each sampling in-
stant k for given α and β:

minimize
γk,Xk,Yj,k,Tij,k,Mijm,k

γk (24a)

subject to [

α− γkβ xT
k

xk Xk

]

≥ 0, (24b)

[

p0 − pk−1 + xT
k Pk−1xk xT

k

xk Xk

]

≥ 0, (24c)

Lii,k ≥ Tii,k, i = 1, . . . , N, (24d)

Lij,k + Lji,k ≥ Tij,k + TT
ij,k, j < i = 1, . . . , N, (24e)

[Tij,k]
N×N

≥ 0, (24f)

Fiim,k ≥Miim,k, i = 1, . . . , N, m = 1, . . . , nz, (24g)

Fijm,k +Fjim,k ≥Mijm,k +MT
ijm,k,

j < i=1, . . . , N, ,m = 1, . . . , nz, (24h)

[Mijm,k]
N×N

≥ 0. (24i)

The index k in the optimization variables (γk, Xk, Yjk, Tij,k,
Mijm,k) denotes the association with the corresponding
time instant when the optimization problem is solved. The
matrices Lij,k and Fijm,k are as defined in (12) and (13).
Thus, using Lemma 1 we know that satisfaction of the
LMIs (24d)-(24i) implies satisfaction of the matrix in-
equalities (11b) and (11c). Therefore, the solution to the
optimization problem (24) guarantees that the properties
of Theorem 1 hold. As in Theorem 1 we define Pk = X−1

k

and Kj,k = Yj,kX
−1

k . Thus, applying the Schur comple-
ment to (24b) leads to

xT
k Pkxk + γkβ ≤ α, (25)

i.e. the state xk lies in the ellipsoid Ω(Pk, α − γkβ). The
scalar pk in (24c) is recursively updated as

pk := pk−1 − xT
k Pk−1xk + xT

k Pkxk. (26)

Note that according to the moving horizon principle the
optimization problem (24) depends on the current system
state xk. The proposed controller is given by the following
algorithm.

Algortihm 1. The moving horizon `2 controller for sys-
tem (1) is as follows:

• Step 0: Choose, respectively determine, the parame-
ters α and β for the LMI (24b) of the optimization
problem (24).

• Step 1: At time k = 0, get x0, solve (24) without (24c)
to obtain (γ0, P0,Kj,0). Compute p0 = xT

0 P0x0 and go
to step 3.

• Step 2: At time k > 0, get xk and solve the optimiza-
tion problem (24).

• Step 3: Compute pk according to (26). Measure the
parameter vector θk. Apply the closed-loop control law

uk =
N

∑

i=1

θj,kKj,kxk (27)

to system (1), replace k by k + 1 and go to step 2.

Theorem 2. For given α and β, suppose that there
exists an optimal solution (γk, Xk, Yj,k, Tij,k,Mijm,k) to
the convex optimization problem (24) depending on the
current system state xk at each time instant k. Then the
parameter-dependent control law (27) guarantees that

(1) the dissipation inequality
k

∑

i=0

(

γ̄−1yT
i yi − γ̄wT

i wi

)

≤ xT
0 P0x0 (28)

is satisfied with γ̄ := max{γ0, γ1, . . . , γk},
(2) the `2 gain from the disturbance wk to the perfor-

mance output yk is less than γ̄,
(3) the constraints (2) are satisfied.

Proof. Part I. From the application of Lemma 1 to the
LMIs (24d)-(24f) we know from Theorem 1 that the dis-
sipation inequality (15) is satisfied at each sampling in-
stant k. Summing up (15) from i = 0 to i = k we obtain

k
∑

i=0

xT
i Pixi −

k
∑

i=1

xiPi−1xi − xT
k+1Pkxk+1

+

k
∑

i=0

(γiw
T
i wi − γ−1

i yT
i yi)≥ 0. (29)

From the recursive definition of pk in (26) it follows

pk =

k
∑

i=0

xT
i Pixi −

k
∑

i=1

xT
i Pi−1xi. (30)

Thus, (29) is equivalent to

pk − xT
k+1Pkxk+1 +

k
∑

i=0

(γiw
T
i wi − γ−1

i yT
i yi) ≥ 0. (31)

By applying the Schur complement to the LMI (24c) and
using the definition of pk (26) we obtain

p0 = xT
0 P0x0 ≥ pk. (32)

Therefore, the inequality

xT
0 P0x0 ≥

k
∑

i=0

(γ−1

i yT
i yi − γiw

T
i wi) + xT

k+1Pkxk+1 (33)

follows from (31). Since γ̄ := max{γ0, γ1, . . . , γk}, we
know that γ̄ ≥ γi and γ̄−1 ≤ γ−1

i for all i. Hence,
with Pk > 0 it clearly follows from (33) that (28) holds.
Part II: Since P0 > 0 it directly follows from (33) that



the `2 gain from the disturbance wk to the performance
output yk is less than γ̄.
Part III: Satisfaction of the LMIs (24d-24i) imply accord-
ing to Lemma 1 satisfaction of the parameter-dependent
matrix inqualities (11b) and (11c). Therefore, the proper-
ties of Theorem 1 hold at each sampling instant k, which
implies satisfaction of the constraints (2) for all k.

In the next section we show via a simple simulation ex-
ample that the online recalculation in the moving horizon
fashion as presented in Theorem 2 is a suitable approach
to tackle the given control problem.

4. SIMULATION EXAMPLE

To illustrate the effectiveness of the proposed `2 MHC
scheme we consider the two-mass-spring model

xk+1 =













1 0 0.1 0
0 1 0 0.1

−0.1
µ

m1

0.1
µ

m1

1 0

0.1
µ

m2

−0.1
µ

m2

0 1













xk

+











0
0

0.1

m1

0











uk +











0
0.1

m1

0
0











wk, (34a)

yk = [ 0 1 0 0 ]xk, (34b)

zk = uk, (34c)

which is similar to the one presented in Yu et al. [2009a],
Cuzzola et al. [2002], Kothare et al. [1996]. The model
is obtained from a continuous time model using a first
order Euler approximation with sampling time δ = 0.1s.
In (34) m1 and m2 are the masses and µ is the spring
constant. The positions of the masses are represented
by x1,k and x2,k, whereas x3,k and x4,k describe their
velocities. From the disturbance input wk we know that
it is energy bounded according to (3) with β = 20. For the
simulation the constant masses m1 = 1 and m2 = 1 have
been chosen. The spring constant has been assumed to be
a time-varying function of the sampling instant k

µk = 5 + sin (0.5k). (35)

Thus, for the uncertainty we have µk ∈ [4, 6]. Introduc-

ing the parameters θ1,k = 1 − µk−4

2
and θ2,k = µk−4

2

system (34) can be written in the form as considered
in this paper, i.e. the parameters θi,k, i = 1, 2, satisfy
condition (4) and the matrices Ai, B = Bi, and G = Gi,
i = 1, 2, are as follows:

A1 =







1 0 0.1 0
0 1 0 0.1

−0.4 0.4 1 0
0.4 −0.4 0 1






, B =







0
0

0.1
0






,

A2 =







1 0 0.1 0
0 1 0 0.1

−0.6 0.6 1 0
0.6 −0.6 0 1






, G =







0
0.1
0
0






.

Furthermore, we have constant matrices C = [0 1 0 0],
D = 0, and H = 0. The control task is to design a
moving horizon `2 controller as derived in Section 3 which
minimizes the `2 gain from the disturbance input wk to

the performance output yk. The controller has to satisfy
input constraints of the form |uk| ≤ 10. For simplicity we
do not consider state constraints in this paper, i.e. the
matrices E = [0 0 0 0] and F = 1 have to be chosen. Fur-
thermore, we have zmax = 10. For the simulation we have
chosen α = 250. Figure 1 shows the obtained simulation
results for the four states xk, the control input uk, and the
disturbance wk. The gray line represents the performance
of a controller obtained after step 1 in Algorithm 1. The
feedback matrices are applied to the system for all times
and are not recalculated online. This controller guaran-
tees the properties established by Theorem 1. The black
line shows the results obtained by the moving horizon
controller according to Algorithm 1, where at each time
instant an online solution of the considered optimization
problem is carried out. It is clearly visible that the distur-
bance is rejected much more efficiently due to the online
recalculation of the control law. Although the constant
feedback law which does not require online computations
guarantees some useful properties, see Theorem 1, con-
troller performance can be significantly improved when the
control law is recalculated online since the controller can
explicitly react on the disturbance. Furthermore, the cur-
rent system state is taken into account in the optimization
problem, which reduces conservativeness of the approach
and allows for more aggressive control inputs. In many
control problems this advantage overcomes the drawback
of the online computational burden.

5. CONCLUSIONS

We presented a moving horizon `2 control approach based
on the repeated online solution of a convex optimization
problem subject to LMI conditions. At each time instant
a parameter-dependent feedback law is calculated such
that the `2 gain from the energy bounded disturbance to
the performance output is minimized and state and input
constraints are satisfied. A simulation example illustrated
the effectiveness of the online recalculation of the control
law leading to a significantly improved disturbance atten-
uation when compared to a static feedback law.
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